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Continuous parameter      to interpolate between hierarchies↵



↵ =

⇢
+1 (normal hierarchy)

�1 (inverted hierarchy)cij = cos ✓ij , sij = sin ✓ij

Notation

(✓12, ✓13, ✓23, �)



Medium-Baseline Reactor Neutrino Experiment (RENO-50, JUNO)

Possible discrimination of the hierarchy via high-statistics 
reactor neutrino experiments at medium baselines (few 
tens of km) was proposed more then 10 years ago

(�m2, ✓12) (�m2, ✓13)
Probe mass-mixing parameters which govern oscillations at short 
wavelength                       and at long wavelength                         , and 
their tiny interference effects which depend on the mass hierarchy

Require unprecedented levels of detector performance and collected 
statistics, and the control of several systematics at (sub)percent level

Therefore, accurate theoretical calculations of reactor event spectra and 
refined statistical analyses are needed



Inverse Beta Decay cross section

⌫e + p ! e+ + n

E Ee

d�(E,Ee)/dEe

In our rate calculation we use 
the differential cross section

Two effects
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with respect to recoilless approximation
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Oscillation probability

↵ =

⇢
+1 (normal hierarchy)

�1 (inverted hierarchy)

continuous parameter constrained 
by the fit statistically appropriate 
for estimation test

hierarchy determination 
compromised if                 
allowed or preferred

↵ ⇠ 0
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Oscillation probability: matter effects, multiple reactors 

. 2⇥ 10�3
Differences with the exact probability can be safely 
neglected in the analysis (                        )

The fractional matter correction to                           is                               in the high 
energy part of the spectrum,  of the same size of the prospective fit accuracy

⇠ 8⇥ 10�3(✓12, �m
2)

Analytical approximation for the oscillation probability in matter and for multiple reactors

(✓12, �m
2) ! (✓̃12, �m̃

2)Replace                                                              in P vac
2⌫

w Damping factor (analytical) to account for multiple reactors



2 Far reactors

5 year exposure

Geoneutrinos (mostly from Uranium and Thorium)

10 Reactor Cores L ⇠ 52.5 km P = 35.8 GW
Detector mass M = 20 kT

L1 = 215 km
L2 = 264 km

3.5⇥ 103

unoscillated events

⇠ 105
3.4⇥ 105

events with oscillations

P = 17.4 GW ⇠ 1.65⇥ 104
unoscillated events

unoscillated events

We consider the JUNO experimental settings 

energy resolution3%
p

(me + Ee)/MeV

With these assumptions
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�2
sys =

X

j=R,U,Th

✓
fj � 1

sj

◆2

�2 = �2(�m2, �m2
ee, ✓12, ✓13, ↵, fR, fU, fTh)

�2
par =

4X

i=1

✓
pi � pi
�i

◆2

�2 = �2
stat + �2

par + �2
sys

DATA  ANALYSIS

(limit of infinite bins)

True spectrum calculated for global analysis best-fit values 
of oscillation parameters and fixed NH (IH) hierarchy
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Energy Scale Error:

�m2
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Hierarchy degeneracy
↵ = ±1 ! ↵ = ⌥1

if E ! E0 satisfies

Good approximation

E ! E0 with E = E0 at E = ET
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the degeneracy 
is then almost complete

↵ = ±1 ! ↵ = ⌥1

If the shape errors in the observable  reactor 
spectrum could compensate the change

�(E)�(E) ! �(E0)�(E0)

they could almost undo the low-energy 
spectral changes and adjust the fit

Analogue results for the case
E ! E0 with E = E0 at E = ET

�2 ⇠ 22
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Hierarchy determination compromised
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Conclusions

MBL reactor neutrino experiment purpose is to probe with unprecedented 
precision some oscillation parameters and the hierarchy. High precision 
required on both experimental and theoretical side

. 2�hierarchy determination at 

⇠ 105

(�m2,�m2, sin2 ✓12)
One order of magnitude better
 measure  of

To this end we  include 
        recoil effects in the cross section calculation (analytically)
        matter effects in the oscillation probability (analytically)
        multiple reactors effects by means of a damping factor (analytically)
Moreover, we treat        as a continuous parameter to solve issues related 
to the statistical interpretation of the data analysis

↵

If energy scale errors are under control, with                 events 


